Effects of Magnetic Field, Sheared Flow and Ablative Velocity on the Rayleigh - Taylor Instability
نویسندگان
چکیده
It is found that magnetic field has a stabilization effect whereas the sheared flow has a destabilization effect on the RT instability in the presence of sharp interface. RT instability only occurs in the long wave region and can be completely suppressed if the stabilizing effect of magnetic field dominates. The RT instability increases with wave number and flow shear, and acts much like a Kelvin-Helmholtz instability when destabilizing effect of sheared flow dominates. It is shown that both of ablation velocity and magnetic filed have stabilization effect on RT instability in the presence of continued interface. The stabilization effect of magnetic field takes place for whole waveband and becomes more significant for the short wavelength. The RT instability can be completely suppressed by the cooperated effect of magnetic field and ablation velocity so that the ICF target shell may be unnecessary to be accelerated to very high speed. The growth rate decreases as the density scale length increases. The stabilization effect of magnetic field is more significant for the short density scale length.
منابع مشابه
Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition
In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...
متن کاملNonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory
In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...
متن کاملMagneto-flow instability in symmetric field profiles
Since Rayleigh’s early work on shear-flow driven instabilities in fluids, it has been known that sheared flows are usually unstable only in the presence of an inflection point in the velocity profile. However, in magnetohydrodynamics, there are important instabilities for which no inflection point is required. In tokamak experiments, strongly sheared flows are associated with transport barriers...
متن کاملEffect of Magnetic Field on Heat Transfer of Nanofluid with Variable Properties on the Inclined Enclosure
The purpose of this study is to investigate the effect of magnetic field on the fluid flow and natural convection of CuO-water nanofluids with variable properties in an inclined square enclosure. The horizontal walls of cavity are insulated, the left sidewall assumed as hot wall and the right sidewall assumed as cold wall. Effects of Rayleigh numbers 103, 104, 105</su...
متن کاملMagnetic instability in a sheared azimuthal flow
We study the magneto-rotational instability of an incompressible flow which rotates with angular velocity Ω(r) = a + b/r where r is the radius and a and b are constants. We find that an applied magnetic field destabilises the flow, in agreement with the results of Rüdiger & Zhang (2001). We extend the investigation in the region of parameter space which is Rayleigh stable. We also study the ins...
متن کامل